Aerospace examples

A norm-based point of view for fault diagnosis: Application to aerospace missions.

#### David Henry (david.henry@ims-bordeaux.fr)

Bordeaux University IMS lab. LAPS Department France ACD'2010 - Ferrara (Italy)







Motivations 000

# Outline of the talk

- Motivations for "norm-based" theory
- **②** Objectives and problem setting: the LTI case
- O The solution
- The  $\mu_g$ -post-analysis procedure
- **(5)** Aerospace examples
- Solution Concluding remarks (extension to LPV problems)

Aerospace example

## Preliminaries

#### matching the keywords "fault detection"

- The SciVerse ScienceDirect database
   → returns more than 40200 records
- The IEEE database:
   → returns more than 12970 records
- The AIAA database:
  - $\rightarrow$  returns more than 200 records
- FDI: a very active research topic in both academic and aerospace industrial institutions
- Not an exhaustive list of existing methods (hardware and model-based, FDI / DX communities)
- Model-based methods applied (with potential applications) to aerospace problems

| $ \begin{array}{c} \text{Motivations} \\ \circ \bullet \circ \end{array} \end{array} $ | The solution | $\mu_g$ Analysis<br>000 | Aerospace examples<br>0000000000 | Conclusion<br>00000 |
|----------------------------------------------------------------------------------------|--------------|-------------------------|----------------------------------|---------------------|
| Motivation                                                                             | S            |                         |                                  |                     |

- Two main approaches
  - Fault estimation ⇒ min optimization problem e.g. following the Kalman's "Prediction Correction cycle" or the "Unknown Input estimation technique".
  - Residual generation problem  $\Rightarrow \min / \max$  optimization problem

#### Linear approaches

 $r(s) = H_y(s)y(s) + H_u(s)u(s) \quad r(s) = G_d(\theta, s)d(s) + G_f(\theta, s)f(s)$ 

#### • <u>Two main solutions</u>

#### Decoupling approaches

$$\begin{split} G_d(\theta,s)d(s) &= 0\\ G_f(\theta,s)f(s) \Rightarrow \text{fault detectability.} \end{split}$$

- "perfect" robustness level
- ⊥ span{d} and // span{f}
   may not exist
- Isolation problem: Rank conditions (often) not satisfied

4/41

Aerospace examples

5/41

An alternative framework: "Approximated" decoupling

 $\Rightarrow \min h_1(T_{rd}) / \max h_2(T_{rf})$  with poles assignment

 $h_1 \in \{H_2, H_{2g}, H_\infty\} \quad h_2 \in \{H_-, H(0)\}$ 

- H<sub>∞</sub> specifications: to enforce robustness to model uncertainty (e.g. external disturbances, parametric uncertainties and neglected dynamics).
- **2**  $H(0)/H_{-}$  specifications: for fault sensitivity requirements over specified frequency ranges.
- **3**  $H_2$  objectives: to take into account the stochastic nature of disturbances.
- $H_{2g}$  + poles assignment: to tune the transient response and to enforce some minimum decay rate of the residuals.

<u>Remark</u>:  $H_2$  not useful for fault sensitivity specifications (Zhou, 2009).



### The proposed solution



• The LFR paradigm: nonlinear parametric uncertainties, neglected dynamics, flexible modes (Beck et al., 1996; Cockburn and Morton, 1997; Varga et al., 1998; Beck and Doyle, 1999; Hecker et al., 2005)

$$\begin{split} y &= \mathcal{F}_u(P, \Delta) \left( \begin{array}{cc} d^T & f^T & u^T \end{array} \right)^T, \Delta \in \underline{\Delta} : ||\Delta||_{\infty} \leq 1, \\ \underline{\Delta} &= \{ \text{block } \operatorname{diag}(\delta_1^r I_{k_1}, ..., \delta_{m_r}^r I_{k_{m_r}}, \delta_1^c I_{k_{m_r+1}}, ..., \delta_{m_c}^c I_{k_{m_r+m_c}}, \\ \Delta_1^C, ..., \Delta_{m_C}^C ), \delta_i^r \in \mathbb{R}, \delta_i^c \in \mathbb{C}, \Delta_i^C \in \mathbb{C} \} \end{split}$$

- Takes into account the controller actions
- $M_y, M_u$ : "merge optimally" input/output signals

Aerospace examples

Conclusion 00000

## Problem formulation

Let f be detectable faults (Massoumnia et al., 1989; Chung and Speyer, 1998; Zad and Massoumnia, 1999; Saberi et al., 2000) and assume  $\sup_{\omega} \mu_{\Delta} \mathcal{F}_l((P, K)(j\omega)) < 1$ . The goal is to find  $M_y \in \mathbb{R}^{q_r \times m}, M_u \in \mathbb{R}^{q_r \times p}$  (constant),  $A_F \in \mathbb{R}^{n_F \times n_F}$ ,  $B_F \in \mathbb{R}^{n_F \times (p+m)}, C_F \in \mathbb{R}^{q_r \times n_F}$  and  $D_F \in \mathbb{R}^{q_r \times (p+m)}$  so that r solves the optimization problem:

<u>Remark</u>: The smallest gain (Chen & Patton, 1999; Rank & Niemann, 1999; Henry, 2005):  $||P||_{-} = \inf_{\omega \in \Omega} \underline{\sigma}(P(j\omega)), \Omega = [\omega_1; \omega_2] \rightarrow differs from (Liu et al., 2005; Wei and Verhaegen, 2008), i.e. defined on a infinite frequency horizon$ 

Aerospace examples

Conclusion 00000

## Problem formulation

Let f be detectable faults (Massoumnia et al., 1989; Chung and Speyer, 1998; Zad and Massoumnia, 1999; Saberi et al., 2000) and assume  $\sup_{\omega} \mu_{\Delta} \mathcal{F}_l((P, K)(j\omega)) < 1$ . The goal is to find  $M_y \in \mathbb{R}^{q_r \times m}, M_u \in \mathbb{R}^{q_r \times p}$  (constant),  $A_F \in \mathbb{R}^{n_F \times n_F}$ ,  $B_F \in \mathbb{R}^{n_F \times (p+m)}, C_F \in \mathbb{R}^{q_r \times n_F}$  and  $D_F \in \mathbb{R}^{q_r \times (p+m)}$  so that r solves the optimization problem:

$$\begin{array}{l} \textcircled{\begin{tabular}{ll} \hline \label{eq:min} My, Mu, F $\gamma_1$} & \forall \Delta \in \underline{\Delta} : ||\Delta||_{\infty} \leq 1 \\ {\rm s.t.} & ||T_{rd}||_{\infty} < \gamma_1 \end{array} & ({\rm Robustness}) \end{array} \\ \hline \end{tabular} \\ \textcircled{\begin{tabular}{ll} \hline \label{eq:min} My, Mu, F $\gamma_1$} & \forall \Delta \in \underline{\Delta} : ||\Delta||_{\infty} \leq 1 \\ {\rm s.t.} & ||T_{rf}||_{-} > \gamma_2 & \forall \omega \in \Omega \end{array} & ({\rm Fault \ sensitivity}) \\ \hline \end{tabular} \\ \hline \end{tabular} \\ \textcircled{\begin{tabular}{ll} \hline \label{eq:max} My, Mu, F $\gamma_1$} & \forall \Delta \in \underline{\Delta} : ||\Delta||_{\infty} \leq 1 \\ {\rm s.t.} & ||T_{rf}||_{-} > \gamma_2 & \forall \omega \in \Omega \end{array} & ({\rm Fault \ sensitivity}) \\ \hline \end{tabular} \\ \hline \end$$

defined on a infinite frequency horizon

### The LMI solution ..... derived in 3 steps

- Specify the robustness and sensitivity objectives + poles assignment → "shaping filters" + LMI Regions.
- **②** The quasi-standard form  $\rightarrow$  algebra manipulations on LFRs.
- Use of the bounded real (Boyd, 1994) and the projection lemmas (Gahinet & Apkarian, 1994) using an appropriate basis, to derive a SDP formulation.



- Illustrative example: noise measurement rejection (to understand).
- Objective: attenuation of 40dB (at least) for  $\omega \in [10rd/s; +\infty[$



$$W_d(s) = 10^{-2} \frac{s+10}{s+0.1}$$

$$\sigma_{max}\{T_{rd}(j\omega)\} < |W_d(j\omega)| \\ \Leftrightarrow ||T_{rd}W_d^{-1}||_{\infty} < 1$$

A norm-based point of view ....

Motivations 000 Aerospace examples

Conclusion 00000

 $10/4^{\circ}$ 

#### Fault sensitivity objectives (shaping filter $W_f$ )

Let  $W_F$  be an invertible LTI transfer matrix defined such that  $||W_f||_{-} = \gamma_2 / \lambda ||W_F||_{-}$  and  $||W_F||_{-} > \lambda$  where  $\lambda = 1 + \gamma_2$ . Define the (fictitious) signal  $\tilde{r}$  such that  $\tilde{r} = r - W_F f$ . Then fault sensitivity objective is satisfied if (sufficient condition)

$$\exists M_y, M_u, F: \left\|T_{\widetilde{r}f}\right\|_{\infty} < 1 \quad \Box$$

<u>Proof</u>: (Henry, 2005)



Illustrative example  $\Rightarrow$  amplification of 20*dB* (at least) for  $\omega \in ]0; 100]rd/s$ 

$$\sigma_{\min}\{T_{rf}(j\omega)\} > |W_f(j\omega)| \\ \Leftrightarrow ||T_{rf}W_f^{-1}||_{-} > 1 \forall \omega \in \Omega$$

A norm-based point of view ....



Aerospace examples

Conclusion 00000

11/41

### The quasi-standard problem



Let  $M = [M_y \ M_u] \in \mathbb{R}^{q_r \times (m+p)}$ . Including  $W_d^{-1}$  and  $W_F$  into  $\overline{P}(M)$ . Then, after some LFR manipulations, it follows that  $(M_y, M_u, F(s))$  solves the problem iff:

$$\left\|\mathcal{F}_{u}\left(\mathcal{F}_{l}\left(\widetilde{P}(M),F\right),\Delta\right)\right\|_{\infty}<1$$

Conclusion 00000

12/41

### The quasi-standard problem



<u>Remark</u>: Not a standard  $H_{\infty}$  problem since  $\widetilde{P}(M) \quad M = (M_y \ M_u)$  $\Rightarrow$  "hinfsyn" / "hinflmi" not applicable

David HENRY - ACD'2010 - Ferrara (Italy) A norm-based point of view ....

Motivations 000  Aerospace examples

Conclusion 00000

### The SDP formulation

#### Proposition (Henry, 2005)

Let  $W = (\widetilde{C}_2 \quad \widetilde{D}_{21})^{\perp}$ . Then  $(M_y, M_u, F(s))$  solve the SDP problem **iff**  $\exists M_y \in \mathbb{R}^{q_r \times m}, M_u \in \mathbb{R}^{q_r \times p}$  and matrices  $R = R^T > 0$  and  $S = S^T > 0$  that solve the following SDP problem:

$$\begin{split} & \min \gamma \\ & s.t. \begin{pmatrix} \tilde{A}R + R\tilde{A}^T & R\hat{C}_1^T & \tilde{B}_1 \\ \hat{C}_1R & -\gamma I_w & \hat{D}_{11} \\ \tilde{B}_1^T & \hat{D}_{11}^T & -\gamma I_{v+q_{\tilde{d}}+q_f} \end{pmatrix} < 0 \\ & \begin{pmatrix} W & 0 \\ \hline 0 & I \end{pmatrix}^T \begin{pmatrix} \tilde{A}^TS + S\tilde{A} & S\tilde{B}_1 & \tilde{C}_1^T(M) \\ \hline \tilde{B}_1^TS & -\gamma I_{v+q_{\tilde{d}}+q_f} & \tilde{D}_{11}^T(M) \\ \hline \tilde{C}_1(M) & \tilde{D}_{11}(M) & -\gamma I_{w+2q_r} \end{pmatrix} \begin{pmatrix} W & 0 \\ \hline 0 & I \end{pmatrix} < 0 \\ & \begin{pmatrix} R & I \\ I & S \end{pmatrix} \ge 0 \end{split}$$

$$\widehat{C}_1 = \left(\begin{array}{ccc} C_1 & D_{1d}C_{wd} & 0_{w \times n_{wF}} \end{array}\right), \quad \widehat{D}_{11} = \left(\begin{array}{ccc} D_{11} & D_{1d}D_{wd} & D_{1f} \end{array}\right)$$

<u>Proof</u> Bounded real lemma + projection lemma in a judiciously chosen basis.

Aerospace examples 0000000000 Conclusion 00000

## The numerical procedure

- Solve the SDP problem (SDPT3, CSDP, DSDP5 ...etc...)  $\implies$  the optimal solution  $(\gamma, R, S, M_y, M_u)$
- ② Compute M, N so that  $MN^T = I RS \rightarrow \text{SVD}$
- 3 Compute the Lyapunov matrix  $X_{cl}$  (those involves in the bounded real lemma)

$$\left(\begin{array}{cc} R & I \\ M^T & 0 \end{array}\right) = \left(\begin{array}{cc} I & S \\ 0 & N^T \end{array}\right)$$

If ind  $A_F, B_F, C_F, D_F$  so that

$$\begin{pmatrix} A_{cl}^{T} X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^{T} \\ B_{cl}^{T} X_{cl} & -\gamma I_{v+q_{\tilde{d}}+q_{f}} & D_{cl}^{T} \\ C_{cl} & D_{cl} & -\gamma I_{w+2q_{r}} \end{pmatrix} < 0$$

The solution  $\mu_g$  Analysis

Aerospace examples

## The numerical procedure

Motivations

- Solve the SDP problem (SDPT3, CSDP, DSDP5 ...etc...)  $\implies$  the optimal solution  $(\gamma, R, S, M_y, M_u)$
- **②** Compute M, N so that  $MN^T = I RS \rightarrow \text{SVD}$
- 3 Compute the Lyapunov matrix  $X_{cl}$  (those involves in the bounded real lemma)

$$\left(\begin{array}{cc} R & I \\ M^T & 0 \end{array}\right) = \left(\begin{array}{cc} I & S \\ 0 & N^T \end{array}\right)$$

I Find  $A_F, B_F, C_F, D_F$  so that

$$\begin{pmatrix} A_{cl}^{T} X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^{T} \\ B_{cl}^{T} X_{cl} & -\gamma I_{v+q_{\tilde{d}}+q_{f}} & D_{cl}^{T} \\ C_{cl} & D_{cl} & -\gamma I_{w+2q_{r}} \end{pmatrix} < 0$$

Aerospace examples

Conclusion 00000

## The numerical procedure

- Solve the SDP problem (SDPT3, CSDP, DSDP5 ...etc...)  $\implies$  the optimal solution  $(\gamma, R, S, M_y, M_u)$
- **②** Compute M, N so that  $MN^T = I RS \rightarrow \text{SVD}$
- Solution Compute the Lyapunov matrix  $X_{cl}$  (those involves in the bounded real lemma)

$$\left(\begin{array}{cc} R & I \\ M^T & 0 \end{array}\right) = \left(\begin{array}{cc} I & S \\ 0 & N^T \end{array}\right)$$

I Find  $A_F, B_F, C_F, D_F$  so that



Aerospace examples

Conclusion 00000

14/41

## The numerical procedure

Motivations

- Solve the SDP problem (SDPT3, CSDP, DSDP5 ...etc...)  $\implies$  the optimal solution  $(\gamma, R, S, M_y, M_u)$
- **②** Compute M, N so that  $MN^T = I RS \rightarrow \text{SVD}$
- Solution Compute the Lyapunov matrix  $X_{cl}$  (those involves in the bounded real lemma)

$$\left(\begin{array}{cc} R & I \\ M^T & 0 \end{array}\right) = \left(\begin{array}{cc} I & S \\ 0 & N^T \end{array}\right)$$

 $\bigcirc$  Find  $A_F, B_F, C_F, D_F$  so that

$$\begin{pmatrix} A_{cl}^{T} X_{cl} + X_{cl} A_{cl} & X_{cl} B_{cl} & C_{cl}^{T} \\ B_{cl}^{T} X_{cl} & -\gamma I_{v+q_{\tilde{d}}+q_{f}} & D_{cl}^{T} \\ C_{cl} & D_{cl} & -\gamma I_{w+2q_{r}} \end{pmatrix} < 0$$



- Since the procedure involves  $MN^T = I RS \Rightarrow I RS$  has to be well conditioned .
- Unfortunately, I RS will be nearly singular if the constraint  $\begin{pmatrix} R & I \\ I & S \end{pmatrix} \ge 0$  is satured at the optimum.

#### Solution

Maximize the minimal eigenvalue of RS to push all eigenvalues away from "1", i.e.

$$\begin{array}{cc} \min \gamma + \varepsilon \rho & s.t \\ \left( \begin{array}{cc} R & \rho I \\ \rho I & S \end{array} \right) \geq 0 & \text{ with } \varepsilon < 0 \end{array}$$

The solution Motivations 

## Computational issues

Since we optimize  $M_y$ ,  $M_u$  and F simultaneously  $\Rightarrow$  no unique solution for  $M_{y}$ ,  $M_{u}$  and  $D_{F}$ , i.e. the static part of F  $\rightarrow r(t)$  includes the subtraction of these two parts.

#### Solution

- **()** Add constraints on  $M = [M_y \ M_u]$  to the LMIs
- 2 and/or add an optimization objective on some functional of M

$$\sum_{j} M_{ij} = 1, \ \forall i$$

Remark: Following my own experience:  $D_F = 0$  (Henry, 2005; Henry, 2006; Falcoz et al. 2008; Henry, 2008; Falcoz et al., 2010).

### Robust poles assignment

<u>Definition</u>(Chilali et Gahinet, 1996):  $\mathcal{R}$  is called a LMI region if  $\exists L = L^T, Q = Q^T$ :  $\mathcal{R} = \{\chi \in \mathbb{C} : f_{\mathcal{R}}(\chi) = L + \chi Q + \chi^* Q^T < 0\}$  $f_{\mathcal{R}}(\chi) =$  characteristic function of  $\mathcal{R}$ .



#### Proposition (Henry, 2005b)

 $\lambda_i \{A_F\} \in \mathcal{R} = \mathcal{R}_1 \cap \ldots \cap \mathcal{R}_N, \, \forall i, \, \forall \Delta \in \underline{\Delta} : ||\Delta||_{\infty} \leq 1 \text{ if (sufficient condition)} \exists N \ X_i = X_i^T > 0 \text{ t.q.}$ 

$$\begin{pmatrix} \mathcal{Q}_{\mathcal{R}_i}(A_{\mathcal{R}}, X_i) & Q_{1i}^T \otimes X_i B_{\mathcal{R}} & Q_{2i}^T \otimes C_{\mathcal{R}}^T \\ Q_{1i} \otimes B_{\mathcal{R}}^T X_i & -I & I \otimes D_{\mathcal{R}}^T \\ Q_{2i} \otimes C_{\mathcal{R}} & I \otimes D_{\mathcal{R}} & -I \end{pmatrix} < 0 \quad i = 1, ..., N$$

 $\rightarrow \mathcal{Q}_{\mathcal{R}_i}(A_{\mathcal{R}}, X_i) = L_i \otimes X_i + Q_i \otimes X_i A_{\mathcal{R}} + Q_i^T \otimes A_{\mathcal{R}}^T X_i$  $\rightarrow A_{\mathcal{R}}, B_{\mathcal{R}}, C_{\mathcal{R}}, D_{\mathcal{R}} : \text{transfer } (\eta^T \hat{z}^T)^T \rightarrow (\varepsilon^T y^T u^T)^T$ 

Conclusion 00000

## $H_{2g}$ specifications

<u>Goal</u>: Find  $(M_y, M_u, F(s))$  so that.

$$r(t)|_{||d||_2=1} < \gamma_3 \quad \forall t \Leftrightarrow ||T_{rd}||_{2g} < \gamma_3$$

#### Proposition (Henry, 2005b)

Given a fictitious signal  $r_g \in \mathbb{R}^{q_r}$  so that  $r_g = W_g r$   $W_g \in \mathbb{R}^{q_r \times q_r}$ ,  $||W_g|| = 1/\gamma_3$  and  $(A_g, B_g, C_g, D_g) \Rightarrow (d^T \hat{z}^T)^T \rightarrow (r^T y^T u^T)^T$ . Then  $||T_{rd}||_{2g} < \gamma_3$  if (necessary condition)  $\exists X_g = X_g^T > 0$  and  $\alpha < 1$  so that:

$$\begin{array}{c} \min \alpha \\ s.t. & \left( \begin{array}{cc} A_g^T X_g + X_g A_g & X_g B_g \\ B_g^T X_g & -I \end{array} \right) < 0, \quad \left( \begin{array}{cc} X_g & C_g^T \\ C_g & \alpha I \end{array} \right) > 0 \\ D_g = 0 \end{array}$$

Proof: Based on some results in (Scherer et al, 1997)

Motivations

 Aerospace examples

Conclusion 00000

# Computational procedure

Join all LMIs into a single optimization problem, i.e. find  $A_F, B_F, C_F, D_F$  so that:

• 
$$H_{\infty}/H_{-}: \begin{pmatrix} A_{cl}^{T}X_{cl} + X_{cl}A_{cl} & X_{cl}B_{cl} & C_{cl}^{T} \\ B_{cl}^{T}X_{cl} & -\gamma I_{v+q_{\tilde{d}}+q_{f}} & D_{cl}^{T} \\ C_{cl} & D_{cl} & -\gamma I_{w+2q_{r}} \end{pmatrix} < 0$$

• Robust poles assignment:  

$$\begin{pmatrix}
\mathcal{Q}_{\mathcal{R}_{i}}(A_{\mathcal{R}}, X_{i}) & Q_{1i}^{T} \otimes X_{i} B_{\mathcal{R}} & Q_{2i}^{T} \otimes C_{\mathcal{R}}^{T} \\
Q_{1i} \otimes B_{\mathcal{R}}^{T} X_{i} & -I & I \otimes D_{\mathcal{R}}^{T} \\
Q_{2i} \otimes C_{\mathcal{R}} & I \otimes D_{\mathcal{R}} & -I
\end{pmatrix} < 0 \quad i = 1, ..., N$$

• 
$$H_{2g}$$
 specifications:  
 $\begin{pmatrix} A_g^T X_g + X_g A_g & X_g B_g \\ B_g^T X_g & -I \end{pmatrix} < 0, \quad \begin{pmatrix} X_g & C_g^T \\ C_g & \alpha I \end{pmatrix} > 0 \quad D_g = 0$ 

For convexity reasons:  $X_{cl} = X_i = X_g$  $\Rightarrow$  conservative solutions.

David HENRY - ACD'2010 - Ferrara (Italy) A norm-based point of view ....

Aerospace examples 0000000000 Conclusion 00000

20/41

### An illustrative example

$$\begin{pmatrix} \dot{x} = A(k)x + E_1d + K_1f \\ y = Cx \end{pmatrix}, A(k) = \begin{pmatrix} 0 & 1 \\ -k/m & -\zeta/m \end{pmatrix}, C = I_2$$

 $m = 10, \quad \zeta = 10, \quad 8 < k < 12, \quad E_1 = (1 \ 1)^T, \quad K_1 = (1 \ 1)^T$ 

• Step 1: The LFR formulation:



$$y = \mathcal{F}_u(P, \Delta)$$
  

$$\Delta = \delta_k, \delta_k \in \mathbb{R}, |\delta_k| \le 1$$
  

$$k = k_0 + w_k \delta_k, \ k_0 = 10, \ w_k = 2.$$

• Step 2: The shaping filters:  $\rightarrow f$  in low frequencies  $\rightarrow d$  in a limited frequency range



Probleme de Synthese de F sur les dimensions:

21/41

Step 3: Solve the SDP problem and compute F(s): •

| > NI                                                                   | bd: 1/                                  | Nb f: 1                                                                                                                       | / Nb u:1/ Nb                                                                                                                              | y: 1/Nbr                                                                                                | : 1                                                                                                                                |                                                                                                                                                                                                                           |                                                                               |
|------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| + Probleme d'optimization LMI:                                         |                                         |                                                                                                                               |                                                                                                                                           |                                                                                                         |                                                                                                                                    |                                                                                                                                                                                                                           |                                                                               |
| +++++++++++++++++++++++++++++++++++++++                                |                                         |                                                                                                                               |                                                                                                                                           |                                                                                                         |                                                                                                                                    |                                                                                                                                                                                                                           |                                                                               |
| ID                                                                     | Cons                                    | straint                                                                                                                       |                                                                                                                                           | Туре                                                                                                    | Tag                                                                                                                                | _                                                                                                                                                                                                                         |                                                                               |
| 1                                                                      | Numeric                                 | value                                                                                                                         | Matrix in                                                                                                                                 | equality 8x8                                                                                            | LMI n1                                                                                                                             |                                                                                                                                                                                                                           |                                                                               |
| 2                                                                      | Numeric                                 | value                                                                                                                         | Matrix in                                                                                                                                 | equality 8x8                                                                                            | LMI n2                                                                                                                             |                                                                                                                                                                                                                           |                                                                               |
| 3                                                                      | Numeric                                 | value                                                                                                                         | Matrix inec                                                                                                                               | uality <mark>12x12</mark>                                                                               | LMI RS                                                                                                                             |                                                                                                                                                                                                                           |                                                                               |
| +++++                                                                  | +++++++++++++++++++++++++++++++++++++++ | ++++++++                                                                                                                      | +++++++++++++++++++++++++++++++++++++++                                                                                                   | ******                                                                                                  | *********                                                                                                                          | ++                                                                                                                                                                                                                        |                                                                               |
| + Mini                                                                 | imisation                               | de gamma                                                                                                                      |                                                                                                                                           |                                                                                                         |                                                                                                                                    |                                                                                                                                                                                                                           |                                                                               |
| + Solv                                                                 | ver chosen                              | ı: sdp                                                                                                                        | t3-3.02                                                                                                                                   |                                                                                                         |                                                                                                                                    |                                                                                                                                                                                                                           |                                                                               |
| + Prod                                                                 | cessing ol                              | bjective                                                                                                                      | h(x)                                                                                                                                      |                                                                                                         |                                                                                                                                    |                                                                                                                                                                                                                           |                                                                               |
| + Prod                                                                 | cessing F                               | (x)                                                                                                                           |                                                                                                                                           |                                                                                                         |                                                                                                                                    |                                                                                                                                                                                                                           |                                                                               |
| + Call                                                                 | ling SDPT:                              | 3                                                                                                                             |                                                                                                                                           |                                                                                                         |                                                                                                                                    |                                                                                                                                                                                                                           |                                                                               |
| *****                                                                  | *******                                 | ******                                                                                                                        | *****                                                                                                                                     | *****                                                                                                   | ********                                                                                                                           | ****                                                                                                                                                                                                                      |                                                                               |
| Infeas                                                                 | Infeasible path-following algorithms    |                                                                                                                               |                                                                                                                                           |                                                                                                         |                                                                                                                                    |                                                                                                                                                                                                                           |                                                                               |
| ******                                                                 |                                         |                                                                                                                               |                                                                                                                                           |                                                                                                         |                                                                                                                                    |                                                                                                                                                                                                                           |                                                                               |
| *****                                                                  | ******                                  | ******                                                                                                                        | ******                                                                                                                                    | ********                                                                                                | *******                                                                                                                            | ****                                                                                                                                                                                                                      |                                                                               |
| ******<br>vers                                                         | **********<br>sion pr                   | *********<br>edcorr                                                                                                           | ***************<br>gam ex                                                                                                                 | **************************************                                                                  | ***********<br>data                                                                                                                | ****                                                                                                                                                                                                                      |                                                                               |
| *****<br>vers                                                          | **********<br>sion pr<br>NT             | *********<br>edcorr<br>1                                                                                                      | ************<br>gam ex<br>0.000                                                                                                           | *************<br>pon scale<br>1                                                                         | ***********<br>data<br>0                                                                                                           | ****                                                                                                                                                                                                                      |                                                                               |
| ******<br>vers                                                         | **********<br>sion pr<br>NT<br>pstep    | *********<br>redcorr<br>1<br>dstep                                                                                            | *************<br>gam ex<br>0.000<br>p infeas                                                                                              | **************************************                                                                  | ***********<br>data<br>0<br>gap                                                                                                    | ******<br>obj                                                                                                                                                                                                             | cputime                                                                       |
| ******<br>vers<br>it<br>0                                              | **************************************  | **********<br>redcorr<br>1<br>dstep<br>0.000                                                                                  | **************************************                                                                                                    | **************************************                                                                  | **************************************                                                                                             | obj<br>-1.470782e-06                                                                                                                                                                                                      | cputime                                                                       |
| ****** vers                                                            | **************************************  | **************************************                                                                                        | **************************************                                                                                                    | **************************************                                                                  | data<br>0<br>2.7e+06<br>2.7e+06                                                                                                    | obj<br>-1.470782e-06<br>-2.005763e+02                                                                                                                                                                                     | cputime<br>0.3                                                                |
| ****** vers                                                            | **************************************  | **************************************                                                                                        | **************************************                                                                                                    | **************************************                                                                  | data<br>0<br>2.7e+06<br>2.7e+06<br>2.7e+06<br>2.7e+06                                                                              | obj<br>-1.470782e-06<br>-2.005763e+02<br>-1.188450e+03                                                                                                                                                                    | cputime<br>0.3<br>0.3                                                         |
| ****** vers                                                            | **************************************  | **************************************                                                                                        | *************<br>0.000<br>p infeas<br>9.7e+05<br>9.3e+05<br>7.7e+05                                                                       | **************************************                                                                  | data<br>0<br>2.7e+06<br>2.7e+06<br>2.7e+06<br>2.7e+06<br>1.8e+06                                                                   | obj<br>-1.470782e-06<br>-2.005763e+02<br>-1.188450e+03<br>-8.102019e+03                                                                                                                                                   | cputime<br>0.3<br>0.3<br>0.3                                                  |
| ****** vers it 0 1 2 3 4                                               | **************************************  | **********<br>1<br><u>dstep</u><br>0.000<br>0.033<br>0.061<br>0.782<br>0.844                                                  | gam ex<br>0.000<br><u>p infeas</u><br>9.7e+05<br>9.7e+05<br>9.3e+05<br>7.7e+05<br>2.4e+05                                                 | **************************************                                                                  | data<br>0<br>2.7e+06<br>2.7e+06<br>2.7e+06<br>2.7e+06<br>1.8e+06<br>6.7e+05                                                        | obj<br>-1.470782e-06<br>-2.005763e+02<br>-1.188450e+03<br>-8.102019e+03<br>-1.143302e+04                                                                                                                                  | cputime<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3                                    |
| ******<br>vers<br>it<br>0<br>1<br>2<br>3<br>4<br>5                     | **************************************  | **********<br>dstep<br>0.000<br>0.033<br>0.061<br>0.782<br>0.844<br>0.623                                                     | ************<br>gam ex<br>0.000<br><u>p infeas</u><br>9.7e+05<br>9.7e+05<br>9.3e+05<br>7.7e+05<br>2.4e+05<br>6.0e+04                      | <pre>******************* pon scale 1 d infeas 1.0e+01 9.7e+00 9.1e+00 2.0e+00 3.1e-01 1.2e-01</pre>     | data<br>0<br>2.7e+06<br>2.7e+06<br>2.7e+06<br>1.8e+06<br>6.7e+05<br>2.3e+05                                                        | obj           -1.470782e-06           -2.005763e+02           -1.188450e+03           -8.102019e+03           -1.143302e+04           -1.089181e+04                                                                       | cputime<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3                             |
| ******<br>vers<br>it<br>0<br>1<br>2<br>3<br>4<br>5<br>6                | **************************************  | **********<br>dstep<br>0.000<br>0.033<br>0.061<br>0.782<br>0.844<br>0.623<br>0.896                                            | gam ex<br>0.000<br>p infeas<br>9.7e+05<br>9.3e+05<br>7.7e+05<br>2.4e+05<br>6.0e+04<br>7.3e+03                                             | <pre>pon scale 1 d infeas 1.0e+01 9.7e+00 9.1e+00 2.0e+00 3.1e-01 1.2e-01 1.2e-02</pre>                 | data<br>0<br>2.7e+06<br>2.7e+06<br>2.7e+06<br>1.8e+06<br>6.7e+05<br>2.3e+05<br>3.4e+04                                             | obj<br>-1.470782e-06<br>-2.005763e+02<br>-1.188450e+03<br>-8.102019e+03<br>-1.143302e+04<br>-1.089181e+04<br>-6.294910e+03                                                                                                | cputime<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3                      |
| ******<br>vers<br>it<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7           | **************************************  | **********<br>dstep<br>0.000<br>0.033<br>0.061<br>0.782<br>0.844<br>0.623<br>0.896<br>0.800                                   | gam ex<br>0.000<br>p infeas<br>9.7e+05<br>9.3e+05<br>7.7e+05<br>2.4e+05<br>6.0e+04<br>7.3e+03<br>2.7e+03                                  | <pre>************************************</pre>                                                         | data<br>0<br>2.7e+06<br>2.7e+06<br>2.7e+06<br>1.8e+06<br>6.7e+05<br>2.3e+05<br>3.4e+04<br>1.6e+04                                  | obj<br>-1.470782e-06<br>-2.005763e+02<br>-1.188450e+03<br>-8.102019e+03<br>-1.143302e+04<br>-1.089181e+04<br>-6.294910e+03<br>-3.533212e+03                                                                               | cputime<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.4               |
| ******<br>vers<br>it<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | **************************************  | **********<br>dstep<br>0.000<br>0.033<br>0.061<br>0.782<br>0.844<br>0.623<br>0.896<br>0.800<br>1.000                          | gam ex<br>0.000<br>pinfeas<br>9.7e+05<br>9.3e+05<br>7.7e+05<br>2.4e+05<br>6.0e+04<br>7.3e+03<br>2.7e+03<br>1.6e+03                        | <pre>pon scale 1 d infeas 1.0e+01 9.7e+00 9.1e+00 0.0e+00 3.1e-01 1.2e-01 1.2e-02 2.4e-03 1.3e-14</pre> | data<br>0<br>2.7e+06<br>2.7e+06<br>2.7e+06<br>1.8e+06<br>6.7e+05<br>2.3e+05<br>3.4e+04<br>1.6e+04<br>1.1e+04                       | obj           -1.470782e-06           -2.005763e+02           -1.188450e+03           -8.102019e+03           -1.43302e+04           -1.089181e+04           -6.294910e+03           -3.53212e+03           -1.555054e+03 | cputime<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.4<br>0.4 |
| ******<br>vers<br>it<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | **************************************  | **********<br>redcorr<br>1<br>dstep<br>0.000<br>0.033<br>0.061<br>0.782<br>0.844<br>0.623<br>0.896<br>0.800<br>1.000<br>0.926 | gam ex<br>0.000<br>p infeas<br>9.7e+05<br>9.3e+05<br>9.3e+05<br>7.7e+05<br>2.4e+05<br>6.0e+04<br>7.3e+03<br>2.7e+03<br>1.6e+03<br>2.4e+02 | **************************************                                                                  | data<br>0<br>2.7e+06<br>2.7e+06<br>2.7e+06<br>2.7e+06<br>1.8e+06<br>6.7e+05<br>2.3e+05<br>3.4e+04<br>1.6e+04<br>1.1e+04<br>1.9e+03 | obj<br>-1.470782e-06<br>-2.005763e+02<br>-1.188450e+03<br>-1.143302e+04<br>-1.089181e+04<br>-6.294910e+03<br>-3.533212e+03<br>-1.555054e+03<br>-6.850118e+02                                                              | cputime<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.4<br>0.4<br>0.4        |

David HENRY - ACD'2010 - Ferrara (Italy)

A norm-based point of view ....

| vations                                                                                       |                                                                                                              | The solu                                                                                                | ition                                                                                               | $\mu_g$ A:                                                            | nalysis                           | Aerospace                        | examples        | Conclusio |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------|----------------------------------|-----------------|-----------|
|                                                                                               |                                                                                                              | 000000                                                                                                  | 00000000                                                                                            | 000 000                                                               |                                   | 00000000                         | 500             | 00000     |
| 19                                                                                            | 0.798                                                                                                        | 0.565                                                                                                   | 1.4e-04                                                                                             | 8.2e-13                                                               | 8.5e-01                           | -9.484335e-01                    | 0.5             |           |
| 20                                                                                            | 0.678                                                                                                        | 1.000                                                                                                   | 4.5e-05                                                                                             | 9.2e-13                                                               | 5.5e-01                           | -9.811465e-01                    | 0.6             |           |
| 21                                                                                            | 0.966                                                                                                        | 0.955                                                                                                   | 1.5e-06                                                                                             | 8.2e-13                                                               | 2.5e-02                           | -9.857646e-01                    | 0.6             |           |
| 22                                                                                            | 0.907                                                                                                        | 0.967                                                                                                   | 1.4e-07                                                                                             | 2.5e-12                                                               | 2.4e-03                           | -9.854703e-01                    | 0.6             |           |
| 23                                                                                            | 0.935                                                                                                        | 1.000                                                                                                   | 1.1e-08                                                                                             | 1.1e-12                                                               | 9.3e-04                           | -9.854826e-01                    | 0.6             |           |
| 24                                                                                            | 0.940                                                                                                        | 0.964                                                                                                   | 3.0e-09                                                                                             | 1.6e-12                                                               | 5.4e-05                           | -9.855364e-01                    | 0.6             |           |
| 25                                                                                            | 1.000                                                                                                        | 0.899                                                                                                   | 1.8e-08                                                                                             | 4.6e-12                                                               | 1.6e-05                           | -9.855383e-01                    | 0.6             |           |
| 26                                                                                            | 1.000                                                                                                        | 1.000                                                                                                   | 1.0e-08                                                                                             | 3.0e-12                                                               | 6.9e-07                           | -9.855386e-01                    | 0.6             |           |
| 27                                                                                            | 1.000                                                                                                        | 1.000                                                                                                   | 1.1e-08                                                                                             | 3.4e-12                                                               | 1.5e-08                           | -9.855386e-01                    | 0.7             |           |
| Stop:                                                                                         | max(rela                                                                                                     | ative gap,                                                                                              | infeasibi                                                                                           | lities) < :                                                           | L.00e-07                          |                                  |                 |           |
| numbe<br>prima<br>dual<br>actua<br>gap :<br>relat<br>prima<br>dual<br>Total<br>CPU t<br>termi | er of it<br>objectiv<br>objectiv<br>l relat:<br>zive gap<br>l infeasil<br>. CPU tin<br>zime per<br>.nation o | rations<br>tive value<br>ve value<br>(XZ)<br>sibilities<br>sibilities<br>me (secs)<br>iteration<br>code | = 27<br>= -9.8<br>= -9.8<br>= -1.5<br>= 1.51<br>= 1.51<br>= 1.06<br>= 3.41<br>= 0.8<br>= 0.0<br>= 0 | 5553456e<br>5523662e<br>0e-05<br>e-08<br>e-08<br>e-08<br>e-08<br>e-12 | -01<br>-01                        | : 'No problems o                 | detected (SDPT3 | .),       |
| > gamma<br>> M=<br>+ Proce<br>+ Proce<br>+ Proce<br>Perform                                   | a minimal<br>[-0.628<br>essing P<br>essing m<br>essing p<br>nance Hin                                        | l: 0.985<br>5 -4.8167<br>tilde<br>yklmi => r<br>ostanalyse<br>nf obtenue                                | 52<br>'e+03]<br>ank(I-RS<br>: De kli                                                                | DH<br>8)< n =><br>mi: 0.9855                                          | F=[0 0]<br>dim(Aaug<br>52 - De no | g):6 - dim(AF)<br>prminf: 0.9878 | :5<br>6         |           |

All numerical indicators are green !

22/41



- The procedure involves sufficient conditions  $(H_- \to H_\infty, \text{ small gain theorem})$
- The nature (i.e. real and/or complex) and the structure (block diagonal) of  $\Delta$  is not taken into account.

⇒  $\gamma < 1$  → what about the conservativeness ? ⇒  $\gamma \ge 1$  →  $F(s), M_y, M_u$  = May be an admissible solution !

#### Post-analysis of robust fault detection performance

 $\Rightarrow$  the generalized structured singular value  $\mu_g$  (Newlin and Smith,1998; Henry 2002; Henry,2005; Henry,2006; Falcoz et al. 2010)

# The $\mu_g$ analysis procedure

Consider  $W_d$  and  $W_f$ . With some LFR manipulations .....



#### Problem formulation

With the computed solution  $M_y, M_u, F(s)$ :

$$||T_{r\tilde{d}}||_{\infty} < 1 \text{ and } ||T_{r\tilde{f}}||_{-} > 1 \quad \forall \Delta \in \underline{\Delta} : ||\Delta||_{\infty} \leq 1$$

or (which is strictly equivalent)

$$\sup_{\omega}\overline{\sigma}\left(T_{r\widetilde{d}}(j\omega)\right) < 1 \text{ and } \inf_{\omega\in\Omega}\underline{\sigma}\left(T_{r\widetilde{f}}(j\omega)\right) > 1 \quad \forall\Delta\in\underline{\Delta}: ||\Delta||_{\infty} \leq 1$$

# The $\mu_g$ analysis procedure

Theorem (Henry, 2005)

Let 
$$\mathcal{N} = \begin{pmatrix} \mathcal{N}_{11} & \mathcal{N}_{12} \\ \mathcal{N}_{21} & \mathcal{N}_{22} \end{pmatrix}$$
 so that  $\mathcal{N}_{22} = T_{r\tilde{f}}|_{\Delta=0}$ . Assume that  
$$\sup_{\omega} \mu_{\underline{\Delta}}(\mathcal{N}_{11}(j\omega)) < 1$$

where  $\overline{\Delta} = \{ diag(\Delta, \Delta_d) \}$ .  $\Delta_d \in \mathbb{C}^{q_{\widetilde{d}} \times q_r}$ . Assume that  $\mathcal{N} \in \text{dom}(\mu_g)$ . Then a necessary and sufficient condition for  $(M_y, M_u, F(s))$  to satisfy the requirements  $W_d/W_f$  is:

$$\sup_{\omega\in\Omega}\mu_{g\underline{\widehat{\Delta}}}(\mathcal{N}(j\omega))<1$$

 $\underline{\widehat{\Delta}} = \left\{ \operatorname{diag}(\overline{\Delta}, \Delta_f) \right\}. \ \overline{\Delta} \text{ is the structure associated to } \underline{\overline{\Delta}} \text{ and } \Delta_f \in \mathbb{C}^{q_{\widetilde{f}} \times q_r}.$ 

### Applications:

- The *Microscope* satellite CNES / IMS (Henry,2008)
- The *HL20* Reentry Vehicle ESA / Astrium ST / IMS (Falcoz et al., 2008 - 2010)
- The MSR Rendez-vous mission Thales Alenia Space / IMS

| Motivations<br>000 | The solution | $\mu_g$ Analysis | Aerospace examples $0 $ | Conclusion<br>00000 |
|--------------------|--------------|------------------|-------------------------|---------------------|
| а. <b>г</b> .      |              |                  |                         |                     |

### Microscope

- Scheduled to be launched in 2011
- <u>Mission</u>: test the validity of the equivalence principle (Einstein, 1911) using space-based measurements with a precision higher than  $10^{-13}$ .
- <u>Orbit</u>: circular, quasi polar, sun synchronous Alt: 700km
- Disturbances
  - Photonic pressure: solar / albedo terrestrial
  - Earth magnetic field
  - Earth gravitational field
  - High atmospheric winds
  - Measurement noises (non perfect NAV module)
- <u>Fault to be detected</u>
  - Actuator (ionic thrusters) faults



CNES - Juin 2003/Illust. D. Ducros

Aerospace examples

Conclusion 00000

## Microscope



Taking into account the AOCS actions (PID + allocation module) + actuator models + satellite dynamics (small angles assumption) + NAV (Pade approximation + former filters) + additive faults model

$$y = P \begin{pmatrix} d \\ f \\ u \end{pmatrix}, u = Ky \quad (i.e. \ \Delta = 0)$$
  $\begin{pmatrix} 12 \ H_{\infty}/H_{-} \ \text{filters} \\ (\text{DOS strategy}) \end{pmatrix}$ 







Robustness requirements (left) and Fault sensitivity objectives (right)

- $W_h \rightarrow$  centered around  $\omega_{spin}$
- $W_n \rightarrow$  Star Tracker (constant) Accelerometers (high frq)
- $W_f \rightarrow$  Low frequency requirements  $\omega \in ]0; 0.1] rd/s$

| Motivations<br>200 | The solution | $\mu_g$ Analysis<br>000 | Aerospace examples $000000000000000000000000000000000000$ | Conclusion<br>00000 |
|--------------------|--------------|-------------------------|-----------------------------------------------------------|---------------------|
| Microscope         |              |                         |                                                           |                     |





Thruster n.4 closed (left) - thruster n.6 jammed (right)

30/41

Motivations 000 The solution  $\mu_g$  Anal

Aerospace examples

Conclusion 00000

## The HL-20 RLV

- Flight trajectory: TAEM (mach  $2.5 \rightarrow ma$ 0.5) + Auto-landing (mach  $0.5 \rightarrow runway$ )
- <u>Model perturbations:</u> CoG, mass, inertia, aeros. coeff
- <u>Disturbances</u>:
- Winds and Atmospheric disturbances
- Non perfect NAV
- Faults to be diagnosed: Left/Right flaps
- Modeling the GNC
- gain-scheduling control laws
- dynamic pressure dependent allocation module
- The HL-20 dynamics
- trim analysis (fault free / faulty situations)
  linear approximation around the flight trajectory

#### 2 $H_{\infty}/H_{-}$ filters (DOS strategy)





Motivations 000 The solution  $\mu_g$  Analogo  $\mu$ 

Aerospace examples

Conclusion 00000

## The HL-20 RLV $\,$

Modeling the aerodynamic coefficients:

- $\rightarrow$  Polynomial interpolation (1D) + PCA (2D): auto-landing phase
- $\rightarrow \mathcal{C}^\infty$  neural network-based models: TAEM phase



32/41



 $\begin{array}{l} \Delta = diag\{\delta_{C_{l0}}, \delta_{C_{m0}}, \delta_{C_{n0}}, \delta_{C_{x0}}, \delta_{C_{y0}}I_3, \delta_{C_{z0}}I_3, \delta_{X_{cg}}I_2, \delta_{I_{xx}}I_2, \delta_{I_{yy}}I_3, \delta_{I_{zz}}I_3, \delta_mI_3\} \\ \Rightarrow \Delta \in \mathbb{R}, \ |\delta_i| \leq 1 \end{array}$ 

- Atmospheric disturbances (Dryden filters): 
$$\begin{split} W_{wu} &= \gamma_w (\sigma_{ug} \sqrt{\frac{L_{ug}}{\pi V}} \frac{1 + \tau s}{1 + \frac{L_{ug}}{TAS}s})^{-1} \\ W_{wv} &= W_{ww} = \gamma_w (\sigma_{vg} \sqrt{\frac{L_{vg}}{\pi V}} \frac{1 + \frac{\sqrt{3}L_v}{V} s + \tau s}{(1 + \frac{L_{vg}}{V}s)^2})^{-1} \\ - \text{Guidance signals: } W_g &= \gamma_g I_3 \\ - \text{Navigation module: } W_n &= \gamma_n \frac{1 + \frac{15}{250}s}{1 + \frac{1}{100}s}.I_{10} \\ - \text{Fault sensitivity objectives: } W_{f_i} &= \gamma_{f_i} \frac{1}{1 + \tau_{f_i}s}, \quad \tau_{f_i} = \frac{1}{\omega_{f_i}}, \, \omega_{f_i} = 3rd/s, \, i = 1,2 \end{split}$$

/41

Motivations 000 The solution  $\mu_g$  Analy

Aerospace examples

Conclusion 00000

## The HL-20 RLV $\,$





 $\sup_{\omega\in\Omega}\mu_{g\underline{\widehat{\Delta}}}(\mathcal{N}_i(j\omega))<1,\ i=1,2,\ \Omega=[0;3rd/s]$ 

All required robustness/fault sensitivity specifications are met  $\forall \Delta$ , all along the reentry flight trajectory.

David HENRY - ACD'2010 - Ferrara (Italy) A norm-based point of view ....

# The HL-20 RLV $\,$

• Nonlinear simulations (Monte-Carlo campaign)



Left wing flap jammed (left) - right wing flap runaway (right)

Motivations 000 The solution  $\mu_g$  Ana not solve the solution  $\mu_g$  Ana not solve the solution of the solutio

Aerospace examples

Conclusion 00000

### The MSR rendez-vous mission

- <u>Mission</u>: Return tangible samples from Mars atmosphere/ground.
- Five spacecrafts: an Earth/Mars transfer vehicle, an orbiter, a descent module, an ascent module and an Earth re-entry vehicle  $\Rightarrow$  Focus on the RDV phase
- <u>Fault to be detected</u>: Thruster faults
- <u>FDI scheme</u>:
- A H(0) observer +  $\lambda_i \{A LC\} < \Lambda_i$
- Cross-correlation test:  $\min_i \operatorname{corr}\{r_j(t), u_{thr_i}(t+\tau)\} i = 1...8$



Fault in thruster 1



LPV formalism = an efficient paradigm to model nonlinear systems

• qLPV formulation (Biannic, 1996; Leith, 2000; Bruzelius, 2004; Marcos, 2005...)

$$\begin{cases} \dot{x}_1 = -x_2 & \xrightarrow{\theta = x_1} \\ \dot{x}_2 = x_1 + \alpha (1 - x_1^2) x_2 & \xrightarrow{\theta = x_1} \\ \end{cases} \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & \alpha (1 - \theta^2) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Plan d'erbi

Plan équatorial

da corps attractif

Trace su tel de l'orbite

P.V.

Sens da

• First order approximation around a reference trajectory  $\Rightarrow$  an adequate formalism for aerospace missions  $\Rightarrow$  known trajectory  $(x_0, u_0)$ 

$$\begin{cases} \dot{x} = f(x, u) & \stackrel{\theta = [x_0^T \ u_0^T]^T}{\Longrightarrow} \begin{cases} \delta \dot{x} = A(\theta) \delta x + B(\theta) \delta \\ \delta y = G(x, u) & \stackrel{\Theta}{\Longrightarrow} \end{cases}$$
$$A(\theta) = \nabla_x f(x_0, u_0), \quad B(\theta) = \nabla_u f(x_0, u_0)$$
$$C(\theta) = \nabla_x g(x_0, u_0), \quad D(\theta) = \nabla_u g(x_0, u_0)$$



• A framework to model gain-scheduling controllers, NDI-based control laws...(Papageorgiou,2005; Falcoz,2007;Bokor,2010)





• A framework to model gain-scheduling controllers, NDI-based control laws...(Papageorgiou,2005; Falcoz,2007;Bokor,2010)



38/41

 $\begin{array}{cccc} \mbox{Motivations} & \mbox{The solution} & \mbox{$\mu_g$ Analysis} & \mbox{Aerospace examples} & \mbox{Conclusion} \\ \mbox{$000$} & \mbox{$000$} &$ 

### Concluding remarks: Extension to LPV problems

Assumptions:  $\theta_i(t)$  are measured in real time and bounded , i.e.  $|\theta_i(t)| \leq 1 \forall t$ 



#### Problem:

Derive  $M_y, M_u$  and the (stable) LPV filter  $\mathcal{F}(\theta) = F_l(F, \Theta)$  so that  $F(s) = \begin{pmatrix} C_{F1} \\ C_{F\theta} \end{pmatrix} (sI - A_F)^{-1} (B_{F1} \ B_{F\theta}) + \begin{pmatrix} D_{F11} \ D_{F1\theta} \\ D_{F\theta1} \ D_{F\theta\theta} \end{pmatrix}$  that solve the following optimization problem:

 $\begin{array}{lll} \min_{M_y,M_u,F} & \gamma_1 & \max_{M_y,M_u,F} & \gamma_2 \\ s.t. & ||T_{d \to r}(\theta)||_{\infty} < \gamma_1 & s.t. & ||T_{f \to r}(\theta)||_{sens} > \gamma_2 \end{array}$ 

39/41



#### The scaled $H_{\infty}$ problem

 $\mathcal{F}(\theta)$  is internally stable  $\forall \theta(t)$  and there exists a solution to the problem if  $\exists \gamma < 1, M_y, M_u$  and F(s):

$$\left\| \begin{pmatrix} \mathcal{L}^{1/2} & 0\\ 0 & \frac{1}{\sqrt{\gamma}} \mathcal{D} \end{pmatrix} F_l \left( \widetilde{P}(M_y, M_u), F \right) \begin{pmatrix} \mathcal{L}^{-1/2} & 0\\ 0 & \frac{1}{\sqrt{\gamma}} \mathcal{D}^{-1} \end{pmatrix} \right\|_{\infty} < 1$$

40/41

 $\mathcal{F}_l(\hat{P}(M_u, M_u), \mathcal{F})$ 

| Motivations | The solution | $\mu_q$ Analysis | Aerospace examples | Conclusion |
|-------------|--------------|------------------|--------------------|------------|
|             |              | 000              |                    | 00000      |
|             |              |                  |                    |            |

Pictures from space: ATV de-docking

Docking: 3rd April 2008

2 De-docking: 5th September 2008

#### Thank you for listening