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Abstract: In this paper we address the problem of efficient control of continuous-review perishable 
inventory systems. In the considered systems the goods at a distribution center used to fulfill unknown, 
variable demand deteriorate at a constant rate, and are replenished with delay from a remote supply 
source. We develop a new supply policy which incorporates the Smith predictor to counteract the adverse 
effects of delay. The proposed policy guarantees that the assigned storage space at the distribution center 
is never exceeded which means that the cost of emergency storage is eliminated. Moreover, we show that 
with appropriately chosen controller parameters all of the demand imposed at the distribution center is 
realized from the readily available resources. 
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1. INTRODUCTION 

It follows from the extensive review papers documenting the 
research work in the past (Nahmias, 1982; Rafaat, 1991; 
Goyal and Giri, 2001; Ortega and Lin, 2004; Sarimveis et al., 
2008; Karaesmen et al., 2008) that certain areas of inventory 
control are not sufficiently addressed at the formal design 
level. This concerns in particular a large and very important 
class of problems related to the management of perishable 
commodities (food, drugs, gasoline, etc.). The main difficulty 
in developing control schemes for perishable inventories 
stems from the necessity of conducting an exact analysis of 
product lifetimes. The design problem becomes cumbersome 
in the situation when the product demand is subject to sig-
nificant uncertainty and inventories are replenished with non-
negligible delay, which frequently happens in modern supply 
chains. In such circumstances, in order to maintain high ser-
vice level and at the same time keep stringent cost discipline, 
when placing an order it is necessary not only to account for 
the demand during procurement latency but also for the stock 
deterioration in that time. 

Since the stock accumulation of perishables cannot be repre-
sented as a pure integrator, the effects of order procurement 
delay cannot be adequately accounted for by introducing the 
notion of work-in-progress or inventory position variables 
(constituting the sum of the on-hand and on-order goods), as 
has been done in a number of successful research works for 
nondecaying inventories, e.g. (Blanchini et al., 2000, Bocca-
doro et al., 2008). In contrast to our earlier results devoted 
exclusively to periodic-review inventory systems with nonde-
teriorating stock (Ignaciuk and Bartoszewicz, 2010a, b), in 
this work we analyze continuous-review systems with ran-
dom lifetime of the stored goods. In order to solve the stabil-
ity problems related to nonnegligible delay (see e.g. (Hoberg 
et al., 2007) for a discussion of the influence of delay on the 

dynamics of the traditional inventory systems), we propose to 
apply the Smith predictor (Smith, 1959). The designed con-
trol strategy is demonstrated to establish nonnegative and 
bounded ordering signal, which is a crucial requirement for 
the practical implementation of any replenishment rule. It is 
also shown that in the inventory system governed by the pro-
posed policy the stock level never exceeds the assigned 
warehouse capacity, which means that the potential necessity 
for an expensive emergency storage outside the company 
premises is eliminated. At the same time, we demonstrate that 
the stock is never depleted, which implies full demand satis-
faction from the readily available resources and 100% service 
level. 

2. PROBLEM FORMULATION 

We consider an inventory system where the goods at a distri-
bution center used to fulfill the customers’ (or retailers) de-
mand are acquired with delay from a supply source. Such 
setting, illustrated in Fig. 1, is frequently encountered in pro-
duction-inventory systems where a common point (distribu-
tion center), linked to a factory or an external, strategic sup-
plier, is used to provide goods for another production stage or 
a distribution network. The task is to design a control strategy 
which, on one hand, will minimize the holding and shortage 
costs, and, on the other hand, will ensure smooth flow of 
goods despite unpredictable changes in market conditions. 

3.1 System model 

The imposed demand (the number of items requested from 
the distribution center) is modeled as an a priori unknown, 
bounded function of time d(t), where t denotes time. We as-
sume that demand can follow any statistical distribution as 
long as 0 ≤ d(t) ≤ dmax, where dmax is a positive constant. 



 
 

     

 

 

Fig. 1. Inventory system with a strategic supplier. 

If there is a sufficient number of items at the distribution cen-
ter to satisfy the imposed demand, then the actually met de-
mand h(t) (the number of items sold to customers or sent to 
retailers in the distribution network) will be equal to the re-
quested one. Otherwise, the imposed demand is satisfied only 
from the arriving shipments, and the additional demand is 
lost (we assume that the sales are not backordered, and the 
excessive demand is equivalent to a missed business oppor-
tunity). Thus, 

( ) ( ) max0 .h t d t d≤ ≤ ≤  (1) 

The on-hand stock used to fulfill the market demand deterio-
rates when kept in the distribution center warehouse at a con-
stant rate σ, 0 ≤ σ <1. It is replenished with delay Lp > 0 from 
a remote supply source. Denoting the quantity ordered from 
the supplier at time t by u(t), and the received shipment by 
uR(t), we have 

( ) ( ).R pu t u t L= −  (2) 

Consequently, the stock balance equation can be written in 
the following way 

( ) ( ) ( ) ( ) ( ) ( ).R py y t u t h t y t u t L h tσ σ= − + − = − + − −  (3) 

According to the stock balance equation, the on-hand stock 
decreases due to the realized sales represented by function 
h(·), and the decay characterized by factor σ. It is refilled 
from the goods acquired from the supplier uR(·). For the sake 
of further analysis it is convenient to represent (3) in an inte-
gral form. We assume that initially the warehouse is empty, 
i.e. y(0) = 0, and the first orders are placed at t = 0, i.e. 
u(t) = 0 for t < 0. Solving (3) for y(·), we obtain (see the Ap-
pendix) 

( ) ( ) ( ) ( ) ( )
0 0

.
t t

t t
Ry t e u d e h dσ τ σ ττ τ τ τ− − − −= −∫ ∫  (4) 

Since uR(t) = u(t – Lp) and u(t < 0) = 0, we can rewrite (4) in 
the following form 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0 0

       .
p

p

t t
t t

p

t L t
t L t

y t e u L d e h d

e u d e h d

σ τ σ τ

σ τ σ τ

τ τ τ τ

τ τ τ τ

− − − −

−
− − − − −

= − −

= −

∫ ∫

∫ ∫
 (5) 

Note that in order to adequately model the stock accumula-
tion of perishable goods, a saturating integrator needs to be 
applied, which makes the considered system nonlinear. 
However, if one can ensure that the control signal is non-
negative for arbitrary t, then by introducing the function rep-

resenting the actually realized sales, h(t) ≤ d(t), the stock dy-
namics can be reduced to linear equation (5). In the further 
part of the paper, we will design a control law which will be 
shown to satisfy the conditions u(t) ≥ 0 and h(t) = d(t). As a 
result, the inventory system will stay in the linear region of 
operation for the whole range of disturbance 0 ≤ d(t) ≤ dmax. 

3.2 Transfer function representation 

The linear part of the model of the considered inventory sys-
tem with perishable goods can be described using transfer 
functions. The system block diagram is shown in Fig. 2. The 
saturating integrator in an internal loop represents the opera-
tion of accumulating the stock of perishables characterized by 
decay factor σ. The controller, with transfer function GC(s), is 
supposed to steer the on-hand stock level y(t) towards the 
reference value yref, such that a high level of demand satisfac-
tion is achieved. 

 

Fig. 2. System model. 

3. PROPOSED CONTROL STRATEGY 

The principal obstacle in providing efficient control in the 
considered class of systems is the latency in procuring orders. 
Indeed, each non-zero order placed at the supplier at instant t 
will appear at the distribution center with lead-time Lp at in-
stant t + Lp > t which may lead to oscillations, or even cause 
instability. In order to satisfactorily counteract the adverse 
effects of delay in the analyzed system with perishable goods, 
it is not sufficient to introduce inventory position variables 
(constituting the sum of on-hand stock and open orders), or 
the notion of work-in-progress, as it is usually done in the 
traditional inventory systems (Blanchini et al., 2000, Warbur-
ton, 2007; Boccadoro et al., 2008). This is due to the fact that 
the pure sum of open orders (or work-in-progress) does not 
account for the stock degradation within lead-time. To over-
come the delay problem, in this work we propose to apply the 
Smith predictor (Smith, 1959), which proved a successful 
method of dead-time compensation in many engineering ar-
eas (Palmor, 1996). The basic idea behind the Smith predic-
tor is to simulate the behavior of a remote plant inside the 
controller structure, thus eliminating the delay from the main 
feedback loop. The proposed control strategy, employing the 
Smith predictor for dead-time compensation is illustrated in 
Fig. 3. 

The control structure consists of the primary plant controller 
C(s) and the Smith predictor built on the linearized model of 
the plant G*(s) = 1/(s + σ). With the primary controller se-
lected as the proportional control law C(s) = K, where K is a 
positive constant, we obtain the transfer function of the over-
all control structure GC(s), 



 
 

     

 

 

Fig. 3. Controller structure. 

( )
( )

( ) ( ) ( ) ( )( )
.

1 1 1p p

C

L s L s

G s

C s K
C s G s e G s KG s e− −∗ ∗ ∗

= =
⎡ ⎤+ − + −⎣ ⎦

 (6) 

In the linear region of operation the plant dynamics is fully 
represented by the transfer function G(s) = 1/(s + σ). If the 
system parameters used by the controller match those of the 
true object, i.e. when ( ) ( )p pL s L se G s e G s

∗− −∗ = , then we can 
write the closed-loop transfer functions: 

a) with respect to the reference input Yref(s) = yref / s 

( )
( )

,pL s

ref

Y s K e
Y s s Kσ

−=
+ +

 (7) 

b) with respect to the disturbance D(s) = L(d(t)), 

( )
( )

1 .pL sY s K e
D s s s Kσ σ

−= − +
+ + +

 (8) 

It is clear from (7) and (8) that the term related to delay is 
eliminated from the characteristic equation (the denominator 
of the closed-loop transfer function). Consequently, since 
K > 0 and σ ≥ 0, the closed-loop system under nominal oper-
ating conditions is stable for arbitrary lead-time and any 
bounded disturbance. 

4. PROPERTIES OF THE PROPOSED STRATEGY 

Before we state the properties of the proposed inventory pol-
icy (6), it is convenient to present it in time domain. We as-
sume that the controller has the exact knowledge of the sys-
tem parameters. Taking into account the initial conditions, we 
can write the control law in time domain by direct inspection 
of the block diagram shown in Fig. 3 in the following form 

( ) ( )

( ) ( ) ( ) ( )
0 0

         .
p

p

ref

t Lt
t Lt

u t K y y t

K e u d e u dσ τσ τ τ τ τ τ
−

− − −− −

⎡ ⎤= −⎣ ⎦
⎡ ⎤

− −⎢ ⎥
⎢ ⎥⎣ ⎦
∫ ∫

 (9) 

This control law can be interpreted as to generate orders in 
proportion to the difference between the current on-hand 
stock and its reference value K(yref – y(t)) decreased by the 
amount of open orders quantified by the rate of deterioration 
within the last lead-time (the terms in the square brackets). 

The properties of the proposed control strategy will be given 
in three Theorems, and strictly proved. The first theorem 
shows that the ordering signal generated by the controller is 
always nonnegative and bounded, which is a crucial prerequi-
site for the implementation of any cost-efficient inventory 
management policy. The second proposition specifies the 
upper bound of the on-hand stock, which constitutes the 
smallest warehouse capacity required to store all the incom-
ing shipments. Finally, the third theorem shows how to select 
the stock reference value in order to guarantee that all of the 
imposed demand will be fulfilled from the readily available 
resources at the distribution center thus ensuring the maxi-
mum service level. 

Theorem 1: The ordering signal generated by controller (9) 
applied to system (3) satisfies the following inequalities 

( ) .ref
ref

y
K u t Ky

K
σ
σ

≤ ≤
+

 (10) 

Moreover, there exists a time instant t0 such that for any t ≥ t0 

( ) max .refy d
u t K

K
σ

σ
+

≤
+

 (11) 

Proof: Substituting (5) into (9) we get 

( ) ( ) ( ) ( ) ( )
0 0

.
t t

t t
refu t K y e u d e h dσ τ σ ττ τ τ τ− − − −⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

∫ ∫  (12) 

Consequently, 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0

0

.

t
t

t
t t t

t
t

du K e e u h d
dt

K e e u h d e e u t h t

K e u h d u t h t

σ στ

σ στ σ σ

σ τ

τ τ τ

σ τ τ τ

σ τ τ τ

−

− −

− −

⎧ ⎫⎪ ⎪= − −⎡ ⎤⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪= − − −⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪= − − −⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

∫

∫

∫

 (13) 

It follows from (12) that 

( ) ( ) ( ) ( )
0

.
t

t
refK e u h d Ky u tσ τσ τ τ τ σ− − ⎡ ⎤⎡ ⎤− = −⎣ ⎦ ⎣ ⎦∫  (14) 

Hence, we can rewrite (13) as 

( ) ( ) ( )
( ) ( ) ( ) .

ref

ref

u Ky u t K u t h t

Ky K u t Kh t

σ

σ σ

⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦⎣ ⎦
= − + +

 (15) 

Investigating 0u =  we get 

( ) ( )
.refy h t

u t K
K

σ
σ

+
=

+
 (16) 

According to constraint (1) the minimum satisfied demand 
equals zero. At the initial time u(0) = Kyref > 0. Therefore, 
since 0 ≤ σ < 1 and h(·) ≥ 0, we get from (16) that u(·) de-



 
 

     

 

creases as long as it is bigger than K[σyref + h(·)]/(σ + K), and 
it never falls below Kσyref/(σ + K). Moreover, there exists a 
time instant t0 when u(·) reaches the level of 
K[σyref + dmax]/(σ + K) for the first time. Since h(·) ≤ dmax, we 
get from (16) that for all t ≥ t0 

( ) max .refy d
u t K

K
σ

σ
+

≤
+

  

This conclusion ends the proof.  

Theorem 2: If policy (9)  is applied to system (3), then the 
on-hand stock at the distribution center never exceeds the 
level of yref for σ = 0 and 

( )max
max 1    for  0.pL

ref
dKy y e

K
σ σ

σ σ
−⎡ ⎤= + − >⎢ ⎥+ ⎣ ⎦

 (17) 

Proof: Applying (12) to the stock balance equation (3) we 
get 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

     

     

     .

p

p

p p

p

p
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t L t
t L t

t L t L
t L t

t
t

t L

y y t Ky

K e u d e h d

K e h d K e h d

K e h d h t

σ τ σ τ

σ τ σ τ

σ τ

σ

τ τ τ τ

τ τ τ τ

τ τ

−
− − − − −

− −
− − − − −

− −

−

= − +

⎡ ⎤
− −⎢ ⎥

⎢ ⎥⎣ ⎦

+ −

− −

∫ ∫

∫ ∫

∫

 (18) 

Using (5) we can notice that the term in the square brackets 
in (18) actually equals y(t). Consequently, we have 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0

   1 .
p

p

p

ref

t L t
L t t

t L

y Ky K y t h t

K e e h d K e h dσ σ τ σ τ

σ

τ τ τ τ
−

− − − −

−

= − + −

+ − −∫ ∫
 (19) 

Closer investigation of 0y =  leads to 

( ) ( ) ( ) ( )

( ) ( ) ( )
0

1

         .

p

p

p

t L
Lref t

t
t

t L

Ky Ky t e e h d
K K

h tK e h d
K K

σ σ τ

σ τ

τ τ
σ σ

τ τ
σ

−
− −

− −

−

= + −
+ +

⎡ ⎤
⎢ ⎥− +

+ ⎢ ⎥⎣ ⎦

∫

∫
 (20) 

It follows from (20) that since K > 0, σ ≥ 0, and h(·) ≥ 0, the 
biggest value of y(·) is expected when h(τ) = dmax for τ ≤ t –Lp 
and h(τ) = 0 in the interval (t – Lp, t]. We get immediately 
from (20) that for σ = 0 (the case of nondeteriorating stock) 
y(t) ≤ yref. Evaluating the first integral in (20) for σ > 0 we 
obtain 

( ) ( ) ( )
max

0 0

p pt L t L
t te h d d e dσ τ σ ττ τ τ

− −
− − − −≤∫ ∫  

( )
( )

 

max max
 0

0

max max
max 1 .

p
p

p p p

t L t t L
t

t
t L L Lt

ed e e d d e

d ded e e e e

σ
σ στ στ

σ
σ σ σσ

τ
σ

σ σ σ

− − −
−

−
− − −−

= =

⎡ ⎤ ⎡ ⎤= − = − ≤⎣ ⎦⎢ ⎥⎣ ⎦

∫
(21) 

Consequently, applying (21) to (20), we arrive at 

( ) ( )max 1 .pL
ref

dKy t y e
K

σ

σ σ
−⎡ ⎤≤ + −⎢ ⎥+ ⎣ ⎦

 (22) 

This ends the proof.  

It follows from Theorem 2 that if the warehouse of size ymax 
specified by (17) is assigned at the distribution center, then 
all the incoming shipments can be stored locally, and any cost 
associated with emergency storage is eliminated. Apart from 
the efficient warehouse space management, a successful in-
ventory control strategy in modern supply chain is expected 
to achieve a high level of demand satisfaction. The proposi-
tion formulated below shows how the reference stock level 
should be selected so that y(t) > 0, which implies that all of 
the demand imposed on the distribution center is satisfied 
from the readily available resources. 

Theorem 3: If policy (9)  is applied to system (3), and the 
reference stock level is selected as 

( )max 1/    for  0,ref py d L K σ> + =  (23) 

( )max 1 / 1/    for  0,pL
refy d e Kσ σ σ−⎡ ⎤> − + >⎣ ⎦  (24) 

then the on-hand stock level at the distribution center is strict-
ly positive for any t > Lp. 

Proof: Note that 1 0pLeσ − > . Hence, considering (1) and 
(20), we can expect the smallest on-hand stock level in the 
circumstances when h(τ) = 0 for τ ≤ t – Lp and h(τ) = dmax for 
τ belonging to the interval (t – Lp, t]. The warehouse is empty 
for t ≤ Lp. In the case of the system with nonndeteriorating 
stock (σ = 0) we get immediately from (20) 

( ) ( )max 1/ .ref py t y d L K≥ − +  (25) 

Thus, based on assumption (23) we have y(t) > 0 for σ = 0. 
Evaluating the second integral in (20) for t > Lp in the case 
when h(t) = dmax and σ > 0, we obtain 

( ) ( ) ( )

( )

max

 

max max  

max
max

      

     1 .

p p

p
p

p p

t t
t t

t L t L

t t tt

t L
t L

t
t L Lt

e h d d e d

ed e e d d e

ded e e e

σ τ σ τ

σ
σ στ στ

σ
σ σσ

τ τ τ

τ
σ

σ σ

− − − −

− −

−
−

−
−

−
− −

≤

= =

⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦⎢ ⎥⎣ ⎦

∫ ∫

∫  (26) 

Applying (26) to (20), we get the on-hand stock level y(·) at 
the instant when it is minimal 



 
 

     

 

( ) ( )max max1 .pL
ref

d dKy t y e
K K

σ

σ σ
−⎡ ⎤≥ − − −⎢ ⎥+ ⎣ ⎦

 (27) 

If the reference stock level is adjusted according to (24), then 
using (27) one may conclude that 

( ) ( ){ }max 1 / 1/ 0.pL
ref

Ky t y d e K
K

σ σ
σ

−⎡ ⎤≥ − − + >⎣ ⎦+
 (28) 

This completes the proof.  

Remark: It follows from Theorem 1 that the controller gen-
erates ordering signal that is always nonnegative and 
bounded, which makes the considered system positive. In 
addition, if assumptions of Theorem 3 are fulfilled, then 
h(t) = d(t), and the plant remains in the linear region for arbi-
trary demand satisfying condition (1). Considering the re-
sponses with respect to the reference input (7) and with re-
spect to the disturbance (8) we get the overall system transfer 
function 

( ) ( )1 .
p

p

L s
L srefyKe KY s e D s

s K s s s Kσ σ σ

−
−⎛ ⎞= − −⎜ ⎟+ + + + +⎝ ⎠

 (29) 

Consequently, applying the final value theorem we get the 
steady-state stock level yss (the stock level in the presence of 
the steady-state demand dss > 0) 

( )
0

1
           for  0,

lim
1  for  0.

p
ref ss

ss s ref
ss

KL
y d

Ky sY s Ky K d
K K

σ

σ
σ σ σ

→

+⎧
− =⎪⎪= = ⎨

⎛ ⎞⎪ − − >⎜ ⎟⎪ + +⎝ ⎠⎩

 (30) 

Equation (30) indicates that a finite steady-state error will be 
present at the output when a proportional control law is cho-
sen as the primary controller C(s) in (6). Typically in engi-
neering systems, this error would need to be reduced (or 
eliminated), for instance by introducing a proportional-
integral controller in place of the proportional one. Also a 
feed-forward term could be applied to compensate the effects 
of disturbance. However, in the considered application, yref 
can be assigned an arbitrary value and any steady-state error 
can be tolerated. What is important from the practical point of 
view when studying inventory control problems is the size of 
the required storage space and demand utilization. Theorems 
2 and 3 show precisely how much storage space should be 
provided to accommodate all the incoming shipments (rela-

tion (17)), and how to select yref to guarantee that all the sales 
are realized from the readily available resources (inequalities 
(23) and (24)). 

4. NUMERICAL EXAMPLE 

The properties of the designed policy (9) are verified in simu-
lations conducted for the model of perishable inventory sys-
tem described in Section 2. The system parameters are set in 
the following way: lead-time Lp = 5 days, inventory decay 
factor σ = 0.07 day–1, and the maximum daily demand at the 
distribution center dmax = 15 items/day. The actual demand 
follows the pattern illustrated in Fig. 4, which reflects abrupt 
seasonal changes in a half-year trend. The controller gain is 
adjusted to K = 0.5. In order to ensure full demand satisfac-
tion, the stock reference level is set according to the guide-
lines of Theorem 3 as yref = 95 > 93 items. This results in the 
required storage space calculated according to (17) 
ymax = 139 items. 

The orders generated by controller (9) in response to the de-
mand pattern from Fig. 4 are shown in Fig. 5, and the resul-
tant on-hand stock in Fig. 6. We can see from the graphs de-
picted in Fig. 5 that the proposed controller quickly responds 
to the sudden changes in the demand trend without oscilla-
tions or overshoots in the ordering signal. For t ≥ t0 = 2 days 
the order quantity remains in the interval [5.83, 
19.01 items/day], precisely as dictated by Theorem 1. The 
knowledge about the range of order changes helps in estab-
lishing long-term relationship between the distribution center 
and the supplier, and facilitates capacity planning down the 
supply chain (at the supplier and its subcontractors). We can 
see from Fig. 6 that the stock level does not increase beyond 
ymax = 139 items, which means that the assigned warehouse 
capacity is sufficient to store the goods at the distribution 
center at all times. Moreover, the on-hand stock never falls to 
zero after the initial phase which implies full demand satis-
faction and 100% service level. 

5. CONCLUSIONS 

In this work we designed a new inventory management pol-
icy for continuous-time inventory systems with perishable 
goods. The proposed policy employs the Smith predictor for 
compensating the adverse effects of order procurement delay. 
As a result, the system stability is guaranteed for arbitrary 
delay and any bounded demand pattern. The ordering signal 
generated by the designed policy smoothly adapts to the de-
mand changes, and thus it is easy to follow by the supplier. 

 
Fig. 4. Market demand. 

 
Fig. 5. Orders placed at the supplier. 

 
Fig. 6. On-hand stock level. 
 



 
 

     

 

The ordering signal is proved to remain finite and always 
nonnegative, which is crucial for the practical implementa-
tion of any inventory management scheme. It is also demon-
strated in the paper that the stock level resulting from the 
application of the proposed policy does not increase beyond 
the precisely determined warehouse capacity, which elimi-
nates the need for costly emergency storage and facilitates 
capacity planning at the distribution center. Finally, it is 
shown how to select controller parameters to achieve full 
satisfaction of the unknown market demand. 
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APPENDIX 

We solve differential equation (3) with the initial conditions: 
y(0) = 0, and uR(t) = u(t – Lp) = 0 for t < Lp. First we consider 
the homogeneous equation 

( ) 0,y y tσ+ =  (31) 

which leads to 

( ) ( )0 .ty t y e σ−=  (32) 

In order to determine the nonhomogeneous solution we as-
sume y(t) in the following form 

( ) ( ) ,ty t q t e σ−=  (33) 

where q(t) is a function differentiable with respect to time. 
Differentiating both sides of (33) we obtain 

( ) .t ty qe q t eσ σσ− −= −  (34) 

Substituting (33) and (34) into (3), we get 

( ) ( ).t
Rqe u t h tσ− = −  (35) 

Solving (35) for q(t) yields 

( ) ( ) ( )
0

,
t

Rq t e u t h t d Cστ τ⎡ ⎤= − +⎣ ⎦∫  (36) 

where C is the constant of integration. Substituting (36) into 
(33), we arrive at 

( ) ( ) ( )

( ) ( ) ( )

0

0

      .

t
t

R

t
tt

R

y t e u t h t d C e

Ce e u t h t d

στ σ

σ τσ

τ

τ

−

− −−

⎧ ⎫⎪ ⎪⎡ ⎤= − +⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭

⎡ ⎤= + −⎣ ⎦

∫

∫
 (37) 

Applying the initial condition y(0) = 0, we have C = 0, and 

( ) ( ) ( ) ( )
0

.
t

t
Ry t e u t h t dσ τ τ− − ⎡ ⎤= −⎣ ⎦∫  (38) 


